
EDURange: A Cloud Based Framework for Teaching Cybersecurity
Analysis Skills

Anonymous Submission #20 (USENIX CSET 2014)

Abstract
This paper reports on the design and implementation of
the EDURange framework, a cloud–based resource for
hosting on-demand interactive cybersecurity scenarios.
EDURange is designed especially for the needs of teach-
ing faculty. The scenarios we have implemented each are
designed specifically to nurture the development of anal-
ysis skills in students as a complement to both theoretical
security concepts and specific software tools.

EDURange has two features that make it unique com-
pared to existing cybersecurity education infrastructure.
First, EDURange is scalable because it is hosted on
a commercial, large-scale cloud environment. Second,
EDURange supplies instructors with the ability to dy-
namically change the parameters and characteristics of
exercises so they can be replayed and adapted to multiple
classes. EDURange has been used successfully in classes
and workshops for students and faculty. We present our
experiences building and testing the system.

1 Introduction

According to published reports by the SANS Institute
and other groups [8], the US faces a major shortage of
cybersecurity workers to defend our information infras-
tructure from attack. In recognition of this need, security
has been included as a core topic in the new ACM/IEEE
Computer Science 2013 Curricula [13]. Cybersecurity is
also mentioned in more than half of the other knowledge
areas in this report. At educational conferences such as
SIGCSE and regional CCSC conferences, we are also
seeing a growing interest in cybersecurity among faculty
who do not have expertise in this area. Given the tight
constraints of the Computer Science curriculum, most
schools do not have the luxury of offering a separate class
in cybersecurity. Thus, the first step is to integrate it into
other classes both at the upper and lower division levels.
We are seeing a growing concensus articulated in the CS

2013 Curricula and in the ACM report “Toward Curric-
ular Guidelines for Cybersecurity” [11] to fully integrate
cybersecurity into the Computer Science curriculum at
multiple levels in multiple courses.

One of the major obstacles to integrating cybersecu-
rity into the curriculum is the amount of work required
to create and set up new hands-on exercises that can be
easily adapted to any specific course. Few two-and four-
year colleges have the facilities to set up their own hard-
ware cluster dedicated to a security lab. In addition, we
wanted hands-on exercises that teach analysis skills. For
us, there was a gap between what we wanted and what
we could access, so we decided to build our own tool.
The criteria we used were:

1. Flexibility to specify exercises at a high level and
create variations. DETER, The RAVE, and SEED
provide sets of exercises. Many of them were good
but not exactly what we wanted, and they were not
easily modified. A big threat to those approaches to
creating long-term teaching tools is that exercises
become stale and answers become easy to Google.

2. Ease-of-use for faculty, which includes providing
easy access to exercises, making them easy to cre-
ate (not requiring configuration of VMs manually),
and parameterizing exercises so that faculty can se-
lect the level of complexity that matches the level of
their class.

3. Educational goals: we wanted to implement sce-
narios that would teach analysis skills, the security
mindset, and address the CS2013 guidelines. The
security mindset is the ability to think about how
systems can fail, and be made to fail in different
ways. This also extends to questioning assumptions
and think analytically about their implications.

While there are large scale computing testbeds and fa-
cilities (DETER, The RAVE) that have been funded to
meet the need of widely available hosted virtual ma-
chines for security teaching and research, they do not

1

meet the need for flexibly creating new exercises, and
they have significant limitations with respect to elastic-
ity and scalability, particularly during busy times of the
semester. While EDURange has significant advantages
over existing infrastructure, it is not intended to supplant
or replace such environments.

Rather, EDURange has been designed as a flexible
complement to these facilities. EDURange provides a
framework to support exercises in an elastic cloud envi-
ronment. With EDURange, it is easy to modify an exist-
ing exercise so that students can repeat it multiple times,
and the instructor does not need to worry about solutions
being posted. It is easy to vary the difficulty of an ex-
isting exercise and update software versions by making
small changes, and variations can be created for different
courses.

The design and implementation of resources, frame-
works, and exercises that support cybersecurity educa-
tion is an active and lively area of work. A significant
community of researchers and instructors from a vari-
ety of institutions have contributed everything from cur-
riculum material to instructor/faculty training to VM-
based labs to this landscape. Yet, we found as a prac-
tical matter that most deployed exercises and hosted en-
vironments have several shortcomings that make them
difficult to leverage in our classrooms [15]. Towson’s
“Security Injections”1 mainly focus on several important
secure programming patterns. While the SEED [6] mate-
rial presents a mature, well-documented set of exercises,
they are not typically interactive or dynamic and they re-
quire faculty to set up and run them.

One of our primary motivations is to create exercises
that would nurture analysis skills. When speaking of
analysis skills, we largely mean the ability to reason
about large, complex, and opaque data and systems.
Strong analytical skills enable people to impose struc-
ture and meaning on such artifacts, reason about these
relationships, and draw meaningful conclusions or infer-
ences. These are precisely the kinds of skills that we
believe are useful in many cybersecurity scenarios from
security policy design to reverse engineering to vulner-
ability analysis. In designing EDURange exercises, we
focus on the following list of analysis skills, and we wel-
come other suggestions.

• Verify assumptions. Checking network messages,
protocols, file formats and other input data con-
straints to see if layers of abstraction are coherent
and correct. Enumerating and checking if failure
modes, exceptions, and errors are controlled, caught
or anticipated.

• Gaining understanding of program, network, or
system behavior and semantics, network topology

1cis1.towson.edu/ cssecinj/

or organization, or a defense posture. Observing
and enumerating how software components or net-
work elements are actually composed.

• Extracting Information from opaque artifacts. For
example, analyzing a raw dump of network traffic or
intrusion alerts or firewall logs.

• Creating Emergent Resilience Understanding a
system well enough to design and propose ehance-
ments to reliability, fault tolerance, or availability.

• Create Deception (or confusion) for an adversary
by creating artificial diversity and applying random-
ization to selectively increase complexity.

In the next section, we describe related work and how
EDURange extends previous work on hands-on exer-
cises. Note that this paper is about our design and de-
cision process for creating scenarios, rather than the spe-
cific exercises that we have chosen. Section 3 describes
the most interesting features of the EDURange infras-
tructure. We discuss the design of our current set of ex-
ercises in Section 3.1. Section 4 describes our experience
creating the framework and delivering the exercises to a
variety of audiences. The main philosophical takeaway
(if a reader wanted to do this in another context) is the
pattern for creating and considering the pros and cons of
the types of scenarios. Section 5 contains a discussion
of lessons learned and considers the mapping from the
CS2013 curricula Security Knowledge Area to exercises
and how they support pedagogical outcomes.

2 Related Work

Our philosphy on information security education stems
from our understanding and teaching of the hacker cur-
riculum as described by Bratus [1]. This approach is
predicated on the utility of understanding failure modes.
Rather than teaching students the “success” cases, we
attempt to deliver a culture shock that makes them dis-
respect API boundaries and adopt a cross-layer view of
the CS discipline as described by Bratus et al. [3]. We
routinely encourage our students to adopt a dual frame
of mind when solving problems to prevent artificial ab-
straction layers from becoming boundaries of compe-
tence [16]. The importance of analysis skills as explained
by S. Bratus et al. [2] is based on linking expected be-
havior to actual behavior as seen in network traces, log
files, program binaries, rules/policies, system call traces,
network topologies, network interactions, unknown pro-
tocols, injected backdoor code, etc. NetCheck [17] is
a tool that facilitates this type of analysis to debug net-
work applications. Using a simplified model of normal
network behavior, NetCheck collects information about
network applications using strace.

2

Our work follows the tradition of creating cybersecu-
rity games or exercises because they have applications
to learning and assessment, and they are fun. This in-
cludes competitions such as CCDC2, Plaid3, notsose-
cure4, iCTF5 [5], CSAW6 [9], TRACER FIRE7, Packet-
wars8, and many others. From our perspective, the prob-
lem with these competitions is that they require a signif-
icant amount of preparation for the organizers. For ex-
ample, it took several grad students six months to create
the exercises for iCTF [5]. Some competitions such as
CCDC and Packetwars require the installation of physi-
cal hardware, and they require that students and their fac-
ulty travel to participate. There are also a number of non-
technical games with the goal of interesting students with
no technical background in cybersecurity. These include
Control-Alt-Hack, [d0x3d!] [10] and Werewolves [7].
The last of these introduces players to the concept of
covert channels in a non-technical context. Our exer-
cises are intended to create scenarios that are closer to
real-world situations.

EDURange is not the only framework for creating cy-
bersecurity exercises. Two others are DETERlab [12]
and The RAVE. As mentioned before, their limitations
are lack of flexibility and scalability. The National Cy-
ber Range is also of note, but its primary use is as a
secure testbed for research. The Seattle Testbed9 is a
research environment with several security exercises in-
cluding one on reference monitors [4].

2.1 Hands-on Cybersecurity Exercises
Judging from the Birds of a Feather sessions on Security
at the last two years of SIGCSE, there has been a modest
increase in the number of hands-on cybersecurity exer-
cises, not all of which address the security mindset. It
is also clear from the workshops we have attended that
faculty want to use them but are frustrated because of the
difficulty in disseminating and setting them up. The other
frameworks that we have tried have some useful features
that we can emulate and some limitations that we try to
avoid.

With respect to our design goals, Table 1 shows the
strengths and weaknesses of other existing cybersecu-
rity labs, exercises, and curricula. EDURange addresses
the primary weaknesses that are listed. The Packet-
Wars10 project is probably the closest existing piece of

2http://nationalccdc.org
3http://www.pwning.net
4http://ctf.notsosecure.com/
5http://ictf.cs.ucsb.edu/
6https://csaw.isis.poly.edu/
7http://csr.lanl.gov/tf/
8http://packetwars.com/
9seattle.poly.edu

10http://packetwars.com

work to what EDURange proposes, and there has been
some work on providing students with access to “live”
exercises on a small scale [14].

3 Design of EDURange Framework

The main requirements for the framework are that it be
easy for faculty and students to use, the exercises should
teach analysis skills, it must be secure, and the exercises
should address the learning goals of CS2013. The last
requirement is addressed by scoring event elements in
the YAML scripts. The use of YAML as an intermediate
representation provides a concise way for an instructor
to understand and modify exercises.

EDURange’s security requirement is that a student
should not be able to unintentionally or intentionally
negatively impact resources outside of the EDURange
framework. For example, in the Recon exercise this
would include mapping a network outside of the bat-
tlespace. In addition, teams should not be able to access
other teams’ VMs, but their members should be able to
collaborate.

Ease of use involves both accessibility and simplcity
of the user interface. We address this accessibility re-
quirement by deploying the EDURange framework on
Amazon’s AWS EC2 cloud. Students and faculty do
not need to sign up in advance for resources. When they
are ready to do an experiment or if they decide at the
last minute to do a demo in class, the resources are al-
ways available. Students can work from anywhere — all
they need is an SSH client. We decided against the al-
ternative of running VMs on a local cluster because that
would have been more expensive and would require work
to maintain — skills and resources that our target audi-
ence may not have access to in any significant amount.

An important way in which we achieved flexiblity is
through the use of tools such as Chef that install soft-
ware in a programmed fashion. We didn’t want to write
separate scripts for each operating system on each VM.
A Chef script can install packages for a wide range of op-
erating systems. The base VMs don’t change frequently,
and the Chef scripts that install software can handle up-
grades transparently.

Each EDURange exercise is specified by a YAML
file. A small number of types of entities recur in all of
our scenarios, so we have made them primitives: net-
works, instances (hardware, computers), software that
is directly involved in the exercise, participants (users),
groups (teams of users), artifacts (flags), and goals (scor-
ing events). Some exercises clearly involve networks and
subnets. For example, Recon 1 and Recon 2 have a sub-
net for the battlespace and a subnet for each team. The
ELF Infection exercise also has a network topology with
a subnet for each team and a subnet for the infected VM.

3

Table 1: A Comparison of EDURange and Existing Projects. EDURange focuses on developing cybersecurity analysis
skills. This table is not a criticism of existing efforts, but rather meant to highlight the ways in which EDURange differs
from the main characteristics of existing projects — note that these projects may have been built with different criteria
in mind.

Project Primary Weakness Primary Strength
Cybersiege shallow analysis interactive training scenarios
SEED lacks competitive interaction comprehensive documentation
Security Injections focus on defensive coding patterns introduction to basic security
CCDC requires travel; limited remote access interactive and competitive
PacketWars requires travel; limited availability contains well-structured scenarios
ITSEED minimal instructor support, distrib by flash drive good documentation for students
Google Gruyere narrow focus (web apps) cloud-based; well-documented
Security Knitting Kit not distributed difficult to judge
The RAVE not very flexible cloud-based; existing lab manual
Seattle Testbed limited in scope easy-to-use; P2P; includes mobile devices
DETERlab limited scalability range of exercises

An “instance” is usually a VM with an operating system.
The special software for Recon 1 includes nmap and tcp-
dump. The goals in this exercise would include the IP
addesses of the instances in the battlespace.

Having a scenario description language has the follow-
ing benefits: flexiblity: exercises can be modified to keep
them exciting. In our pedagogical model, students repeat
exercises. For example, with Recon 1, a student may try
a set of options for nmap and discover that it takes too
long. We want the student to have time to think about
trying different options after experiencing the problem.
Analysis takes time, which is a limitation of most com-
petitions. They tend to reward speed and don’t allow time
for in-depth analysis. Repeating exercises is not viable if
the network configuration is static.

3.1 Scenarios

The overriding requirement for each scenario was that it
must support the development of analysis skills; in other
words, the student must come away from the experience
with not only an appreciation for the knowledge involved
in the subject matter or a basic understanding of some of
the tools used, but also with insight and a logical ap-
proach for understanding the conceptual issues at play.
EDURange is a work in progress, and we have a number
of exercises under development:

• Recon 1 is about mapping a network and under-
standing network protocols, such as TCP, UDP,
ICMP.

• Recon 2 includes intrusion detection and preven-
tion. The student trades off speed with stealth, the

attacker must be able to map a network without trig-
gering the defenses.

• ELF Infection is about forensics and reverse engi-
neering. The student is given a VM, which has an
infected utility. They must discover which utility is
infected and what the malicious behavior is.

• ScapyHunt is a puzzle set in a software defined net-
work. The puzzle involves finding data on a target
host that is behind a gateway. It involves passively
examining network traffic and crafting packets to
reveal specific information.

• Firewall is about creating a set of rules to control
traffic in and out of a network. More generally, it
requires understanding how a complex set of rules
implements an access conrol policy.

• Fuzzing In the simplest version, the defender is
given the grammar for a calculator and must imple-
ment an interpreter for that grammar. The attacker
tries to fuzz the interpreter to produce incorrect re-
sults or get it to reject a valid expression. Students
interact with their peers by assuming different roles.

• Process Records (strace) involves deciphering
what programs were running on a machine given
a large trace of system calls (exeve(2) records are
purposefully mangled). The simplest form of this
exercise is to provide a complete short trace for a
simple program (e.g., running date(1)). Variations
involve larger traces, more programs, incomplete
traces (sampling). The exercise demands that stu-
dents begin to impose some modeling and structure
on this large, overwhelming source of data, and it
encourages them to read the documentation on a

4

number of system calls. Similar exercises could be
based on log files.

4 Experience Generating and Disseminat-
ing Exercises

In this section, we discuss how we implemented the
EDURange framework. EDURange has several com-
ponents working at different levels. At the intermediate
level, the YAML file containing primitives described pre-
viously is translated into API calls to AWS/EC2, which
create the instances. For software installation, every in-
stance created runs a startup script via cloud-init which
installs all dependencies required for us to configure it,
including Chef Solo. Additionally, each instance is sent
a private AWS S3 URL which contains instance-specific
Chef instructions, such as creating accounts for players
or installing and configuring software for a scenario.

Sample YAML that can be used to modify the
instance-specific chef code is included below. Roles con-
tain both packages, which use chef to install a package
from the package manager, as well as recipes which ref-
erence either EDURange or third party chef recipes. In a
manner similar to CSS classes, after being defined roles
are referenced by name within each instance declaration.

Chef has a wide variety of third party cookbooks
which EDURange supports using, but EDURange also
has its own library of recipes, created as needed to sup-
port our scenarios. The ELF Infection exercise men-
tioned earlier in this paper is simply implemented as a
shell script within chef, as the code compiles using the
standard make, make install process.

The final component of EDURange is the scoring en-
gine. While we have not implemented this parsing side
yet, we have designed a specification for defining goals
in the YAML file. Each goal (associated with teams) may
contain any combinations of triggers, actions, checks,
and point changes in order to assess progress throughout
the scenario, as well as over multiple playthroughs. Trig-
gers define what event must occur in order for the goal
to be tested. It could be once, 20 minutes into a game,
or every minute. The action defines what is tested, using
any scoring modules we make available such as testing
a web sites status or checking that a port is open. The
check field in a goal takes the result from the action and
determines whether or not the point modification made,
if specified, should be made. A sample goal is included
below, although the syntax is likely to change.

The cost of running a two-day hackathon was only
$28.

4.1 A Detailed View: The Recon Exercise

The recon exercise was inspired by a largely similar exe-
cise from Packetwars. We chose it as the first exercise to
implement because it is relatively simple, we understood
it well enough, everyone in the project had actually com-
pleted it a few times, and it would enable us to concen-
trate on building the EDURange infrastructure without
having to worry too much about simultaneously spec-
ifying a “scenario-in-progress”. Supporting the Recon
exercise would be an existence proof of EDURange’s vi-
ability as a teaching tool, and it would allow us to check
that we had met our design requirements for the infras-
tructure itself. The Recon exercise amply exhibits the
characteristics of the types of scenarios we are interesting
in developing, deploying, and supporting in EDURange.
In particular, this exercise demonstrates how each EDU-
Range scenario we have designed and implemented can
act as a jumping off point for further lessons and study.
The setting can serve as a starting point for exploration
of a range of topics. The recon exercise can be accom-
plished at a fairly basic level, but then provide the in-
structor with the opportunity to discuss or teach about a
variety of networking and security concepts and ideas.

Internet

Instructor

NATNat Instance

Player 1
(10.0.128.16/28)

Player 1 Instance

Battle Space
(10.0.127.255/17)

BattleSpace Instance 1

Figure 1: Conceptual diagram of the Recon I game. Note
subnets are shaded (blue)

4.2 Feedback on Recon Exercise

In this section we provide a detailed review of the feed-
back and experiences of user in the Recon 1 exercise. We
have now run the Recon exercise with 110 students in 6
different settings spanning four different institutions as
shown in the table below. The first roll out of the Re-
con exercise was at the SISMAT 2013 program held at
Dartmouth. Recon was one of 6 lab experiences that the

5

students participated in during the 10 day workshop. Stu-
dent feedback indicated that there were implementation
issues (e.g. insufficient background information and in-
structions). However, student responses on a post-class
survey revealed that students felt that the exercise was
worthwhile and that it increased their interest in cyber-
security education (one-tailed t-test found ratings well
above neutral p < .01).

Eleven Evergreen and Lewis & Clark College stu-
dents along with four professors spent two days in Au-
gust 2013 in an intensive hackathon that included 2 run
throughs of the Recon 1 exercise, once with advanced
students with previous computer security coursework
and once with students with no prior computer security
training. This workshop uncovered several issues with
remote configuration and set up of the infrastructure, that
were subsequently fixed. We also learned that some im-
portant prerequisite knowledge is needed in order for the
exercise to be meaningful, including the OSI model for
network layers We also uncovered unreasonably long la-
tencies in configuring the exercise and in running some
nmap commands that led to improvements to the instruc-
tions an changes in the scope of the network searches in
the exercise.

The four remaining student deployments were all
done in the context of undergraduate and graduate level
courses on security at three different educational institu-
tions. In each case the full exercise was successfully im-
plemented based on improvements made from SISMAT
and the Hackathon. In one of these courses (CS 495
at Lewis & Clark College) student surveys conducted at
the end of the semester indicate that students found the
Recon exercise worthwhile in their learning (M=5.25 on
a 7 point likert scale, p < .005).

Along with testing the Recon 1 exercise with over 100
students, we also held workshops for 29 faculty at three
different conferences. As you can see in the table be-
low, we targeted a variety of institutions, including in-
structors at two year colleges, small liberal arts colleges
and research universities. Our workshop attendees also
differed widely in experience teaching Computer Secu-
rity courses, some have no experience yet while others
have taught several different courses at both undergradu-
ate and graduate levels. At each conference, we made ad-
justments based on feedback and challenges experienced
in the how to present the Recon 1 Scenario. We also
gave post workshop surveys at each conference. At each
conference participants felt that taking the workshop in-
creased their interest in the topic of Cyber Security (all
ps < .02).

4.3 A Detailed View: ScapyHunt
We presented a small class of graduate students with both
the Recon and ScapyHunt exercises. This group of stu-
dents felt that Recon was easier than ScapyHunt – in fact,
they were unable to make much progress at all in the sce-
nario (this was partly due to class dynamics: they did
not function effectively as a team). Similar to students
using other scenarios, they expressed a wish for a sim-
ple canned demo or hint to start off. The exercise itself
is somewhat intimidating because it begins with a login
prompt and little else beyond the directive “find the hid-
den resource in this hidden network topology.” This style
of play is similar to text adventure games.

The students required prompting during most of the
interaction. For example, the students needed prompt-
ing to open a terminal and use standard network com-
mand line tools and utilities (e.g., Wireshark) to discover
network information. They quickly fixated on nmap, al-
though nmap is ultimately of little utility for this exer-
cise. To us, this seemed like a side-effect of security
training that is too heavily tool-oriented. We prompted
students to both “write” to the network (via ping, nmap,
netcat, and some packet-crafting tools) and simultane-
ously “read” from the network to observe both their own
actions and the actions of the entities in the software de-
fined network (SDN). They also did not use any notes,
drawings, or aids — they tried to hold most of the infor-
mation in their heads. This kind of mistake is unlikely to
be repeated when they revisit a similar task because they
saw how “big” the task was in terms of the amount of
information generated by the tools they eventually used.

5 Discussion, Lessons Learned and Future
Work

There is a demand for hands-on cybersecurity exercises
and a framework for creating them. One of the most im-
portant lessons we learned from feedback from faculty
is that they really want more exercises that they can use
right now in their classrooms and they want it to be easy.
They have expressed interest in EDURange, they want it
now, and they want enough exercises to fill out a course.
There is a wide range of faculty who want this. At our
SIGCSE workshop, some felt that Recon 1 was too chal-
lenging, while others said it was too easy.

EDURange provides starting points for discussing im-
portant topics. For example, Recon 1 can be an opportu-
nity to discuss the OSI model, subnet masking, broadcast
addresses, even using the command line.

EDURange can be used by students for formative self-
assessment. We learned that unlike with exams, where
students do not want to admit what they don’t know, with
hands-on exercises such as Recon 1, students were able

6

Table 2: Student classes and workshops

Date Site Class Number of Students
June 2013 Dartmouth SISMAT 12
Aug 2013 Lewis & Clark Hackthon 11
Nov 2013 Evergreen Network Security 40
Feb 2014 Lewis & Clark CS 495 Cbyersecurity 18
Feb 2014 Univ. of Calgary CPSC 601 Seminar: Security Analysis 4
March 2014 Univ. of Calgary CPSC 525 Network Security 25

Table 3: Faculty workshops

Date Audience Workshop Number of Faculty
Oct 2013 Liberal Arts Colleges CCSC-NW11 8
Jan 2014 2-year Colleges MPICT12 7
March 2014 Broad Scope SIGCSE13 14

to reflect on what they didn’t know in the context of what
they wished they had known when trying the exercise.
Since Recon 1 is a very focused exercise, students were
able to identify the need for more tutorials and canned
demos on specific topics, such as TCP, ICMP and sub-
networks. With exercises such as Recon 1, there is no
way to fake the knowledge needed. On the other hand,
we learned that the game must be appropriate for the au-
dience. If students haven’t studied networking and don’t
have experience with the command line, they will have
difficulty and may get frustrated. We learned that some
students may need videos and screen captures to help
them get a foothold. We have started to create some tu-
torials and “level zero” versions.

6 Conclusion

EDURange provides a scalable, easy-to-use infrastruc-
ture to an audience of instructors that have few local re-
sources or capacity to set up complex systems. By using
a public industry “best of breed” cloud, EDURange is
unique and cost effective, and avoids some of the limi-
tations associated with dedicated testbeds. Many of our
student and instructor audiences were positive about its
potential.

While EDURange has significant advantages over ex-
isting infrastructure, it is not intended to supplant or re-
place such environments (RAVE, DETER). Our main fo-
cus is on providing dynamic, flexible cybersecurity sce-
narios that teach analysis skills (rather than toolsets or
specific attacks). Our design criteria for exercises is
stringent in that each exercise must nurture a student’s
ability to analyze large, opaque artifacts. We also iden-

tify how the exercise maps to the CS2013 curriculum
knowledge areas as a service to the students and instruc-
tors. We suggest that EDURange’s support for customiz-
ing scenarios represents a natural evoluation of cyberse-
curity education infrastructure.

References

[1] Sergey Bratus. What hackers learn that the rest of
us don’t: Notes on hacker curriculum. IEEE Secu-
rity and Privacy, 5:72–75, 2007.

[2] Sergey Bratus, Nihal DCunha, Evan Sparks, and
Sean W Smith. Toctou, traps, and trusted comput-
ing. In Trusted Computing-Challenges and Appli-
cations, pages 14–32. Springer, 2008.

[3] Sergey Bratus, Anna Shubina, and Michael E. Lo-
casto. Teaching the principles of the hacker cur-
riculum to undergraduates. In Proceedings of the
41st ACM technical symposium on Computer sci-
ence education, SIGCSE ’10, pages 122–126, New
York, NY, USA, 2010. ACM.

[4] Justin Cappos and Richard Weiss. Teaching the
security mindset with reference monitors. In Pro-
ceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE ’14, pages
523–528, New York, NY, USA, 2014. ACM.

[5] Adam Doupé, Manuel Egele, Benjamin Caillat, Gi-
anluca Stringhini, Gorkem Yakin, Ali Zand, Lu-
dovico Cavedon, and Giovanni Vigna. Hit ’em

7

where it hurts: A live security exercise on cyber sit-
uational awareness. In Proceedings of the 27th An-
nual Computer Security Applications Conference,
ACSAC ’11, pages 51–61, New York, NY, USA,
2011. ACM.

[6] Wenliang Du and Ronghua Wang. Seed: A suite
of instructional laboratories for computer security
education. J. Educ. Resour. Comput., 8:3:1–3:24,
March 2008.

[7] Roya Ensafi, Mike Jacobi, and Jedidiah R. Cran-
dall. Students Who Don’T Understand Information
Flow Should Be Eaten: An Experience Paper. In
Proceedings of the 5th USENIX conference on Cy-
ber Security Experimentation and Test (CSET’12),
pages 10–10, 2012.

[8] Z. FRYER-BIGGS. Dod faces cyber expert talent
shortage. Computer, 33(12):52–59, 2000.

[9] Efstratios Gavas, Nasir Memon, and Douglas Brit-
ton. Winning cybersecurity one challenge at a time.
Security & Privacy, IEEE, 10(4):75–79, 2012.

[10] Mark Gondree and Zachary N.J. Peterson. Valuing
security by getting [d0x3d!]: Experiences with a
network security board game. In Presented as part
of the 6th Workshop on Cyber Security Experimen-
tation and Test, Berkeley, CA, 2013. USENIX.

[11] Andrew McGettrick, Lillian N. Cassel, Melissa
Dark, Elizabeth K. Hawthorne, and John Impagli-
azzo. Toward curricular guidelines for cyberse-
curity. In Proceedings of the 45th ACM Techni-
cal Symposium on Computer Science Education,
SIGCSE ’14, pages 81–82, New York, NY, USA,
2014. ACM.

[12] Peter AH Peterson and Peter L Reiher. Security
exercises for the online classroom with deter. Proc.
of the 3rd USENIX CSET, 2010.

[13] Mehran Sahami, Mark Guzdial, Andrew McGet-
trick, and Steve Roach. Setting the stage for com-
puting curricula 2013: computer science–report
from the acm/ieee-cs joint task force. In Pro-
ceedings of the 42nd ACM technical symposium
on Computer science education, pages 161–162.
ACM, 2011.

[14] G. Vigna. Teaching Network Security through Live
Exercises. In Proc. 3rd Ann. World Conf. Infor-
mation Security Education (WISE 03), pages 3–18.
Kluwer Academic, 2003.

[15] Richard Weiss, Jens Mache, and Erik Nilsen. Top
10 hands-on cybersecurity exercises. Journal of
Computing Sciences in Colleges, 29(1):140–147,
2013.

[16] G. White and G. Nordstrom. Security across the
Curriculum: Using Computer Security to Teach
Computer Science Principles. In Proceedings of the
19th National Information Systems Security Con-
ference, pages 483–488. NIST, 1996.

[17] Yanyan Zhuang, Eleni Gessiou, Steven Portzer,
Fraida Fund, Monzur Muhammad, Ivan Beschast-
nikh, and Justin Cappos. Netcheck: Network diag-
noses from blackbox traces. In 11th USENIX Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI14), USENIX.

8

